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We’ll begin with something well known
(and then something that, | thinR, deserves to
be better known)



Appetizer

Something well known: Classical Propositional Logic is decidable.
Let's add another connective o.
What axioms and rules should govern o? Let's say:
cpol =1, lop— 1,
“po (VX)) e (po) Vipox) WV x)op < (Yop)V(xop),
“(pod)ox < po(Yox),

@ & @ 0 @
poth @ oy’ Yop oy’

Question: Is the resulting system decidable?



Answer: It is not! (cf. Kurucz, Némethi, Sain,
and Simon 1995)
And in fact, it is the modal logic

Ko® (pog)or <> po(qor)



Plan for the rest of the talk

- Setting
- Results and technique
— Related results

Preprint available on arXiv.


https://arxiv.org/abs/2506.16366

Logically, we are interested in normal extensions of
AKy; =Ky @ (pog)or<++po(qor).

Algebraic semantics for AKj is given by associative BAOs (A, V,A,—, L, T, o):

+ (A, V,A, -, L, T)isaBA

czo(yVz)=(zoy)V(roz)and (zVy)oz=(roz)V(yoz)

cxol=1=1lox

- (woy)oz=wo(yoz).
Relational semantics for AKs is given by associative frames F = (X, -):
- X? — P(X) is a function sit.

(x-y) z=x-(y-2),
and
M,z Ik poa iff there exist y, z € X such that M, y IF ;
M,z IF; andz €y - 2.

cisliftedtosets Y, Z C X byY -Z:={z e X |FyeY,z€Z:xz €y z}. .



Two central systems

1. Take frames (X, -) to be semilattices: - is functional, associative,
commutative, and idempotent.
- We obtain the modal logic of semilattices (decidability problem
raised by SBK (2023a)).
- Algebraically, this is Var(SL™) (raised by Bergman (2018) and
Jipsen, Eyad Kurd-Misto, and Wimberley (2021)).

2. Take frames (X, ) to be Boolean algebras (raised by Goranko
and Vakarelov (1999)).

Goal: Prove (un)decidability.

TGoranko and Vakarelov (1999) call their logic ‘hyperboolean modal logic’ and include
modalities for all the Boolean operations, not just the join.



The Domino Problem

- AWang domino (tile) is a square with colors on each side.

«+ The domino (tiling) problem: Given a finite set of Wang tiles W, is it
possible to tile the first quadrant N x N so that adjacent tiles match
along their shared edges

- Introduced by Wang (1963) and proven undecidable by Berger (1966).
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Figure 1: Wang tiles Figure 2: A tiling of the plane

Figures taken from: https://en.wikipedia.org/wiki/Wang_tile 8
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Given W, construct a formula ¢,,, such that:

¢, refuted by
an associative frame
(or associative BAO)

7 N
¢,y refuted by (P(N),U) — W tiles
(or its complex algebra) N x N
Theorem
Let V be a variety of associative Let L be an associative normal
BAOs. modal logic.
If V contains (P(N),U)*, then V If L C Log(P(N),u), then L is

is undecidable. undecidable.




Associativity and Tiling 1

R R
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From (Rady and Rdzc) infer 3b € X (Raxb and Rbcy).

«R

> Q.

R, = R, R,

a

b a
R R

From (Razb and Rbey) infer 3d € X (Rady and Rdzc). *
2,R:={(a,b) € X? | Razb} and R.:={(a,b) € X2 | Rabz} 10

b




Associativity and Tiling 2

o, B a,
P1,3 > P23 > P3,3
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Figure 3: Generating N? from the staircase: pi 1, p2.1,p2.2,03.2,D3.3, - - -
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Consequences

Theorem

Let V be a variety of associative Let L be an associative normal
BAOs. modal logic.

If V contains (P(N),U)™, then V If L C Log(P(N),u), then L is
is undecidable. undecidable.

Recall the above. From this, we get:

Theorem

Hyperboolean modal logic is

+ - .
Var(BA™) is undecidable. undecidable.

v

Theorem

The modal (information) logic of
semilattices is undecidable.

Var(SL™) is undecidable.

Proof. Semilattices are associative and (P(N), U) is, in particular, a
semilattice.



Other Conseq

Undecidability for:

- The variety of Boolean semilattices (Bergman 2018 and Jipsen, Eyad
Kurd-Misto, and Wimberley 2021).

- Modal logics over (modular/distributive) lattices (Wang and Wang (2025)).

- Conservative extension of Skvortsov's modal logic.

New undecidability proofs for:

- AK> =Ko @ (pog)or <> po(qor) [Kurucz, Némethi, Sain, and Simon
1993, 1995]

- The classes of algebras isomorphic to (commutative) algebras of binary
relations closed under composition, intersection (N), union (U), and
complementation (¢) [Hirsch, Hodkinson, and Jackson 2021, Cor. 11.3]

- Boolean Bunched Implication logic (BBI) [Brotherston and Kanovich 2010;
Kurucz, Néemethi, Sain, and Simon 1995; Larchey-Wendling and Galmiche
2010]

Lastly: There is no translation from modal information logic into truthmaker
semantics (question raised by van Benthem 2017, 2024)



Related results



Thank you!
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Team semantics as relational semantics

For X := {v | v: Prop — {0,1}} and s € P(X), we had

sEp iff Yo € s:o(p) =1,

sEpAY iff sk and sk,

sE oW iff sEp or sE1,

sFE ~p iff s o,

sEQVY iff there exist s’,s” € P(X) such that s’ E ¢;

s"Eq; ands=s"Us".
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Team semantics as relational semantics

For X := {v | v: Prop — {0,1}} and s € P(X), we had

sEp iff Yo €s:u(p) =1,

sEpAY iff skE @ and sk,

sEpVY iff sEy or sE,

sk~ iff s o,

sEQVY iff there exist s',s” € P(X) such that s’ E ¢;

s"Eqy;ands=s"Us".
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Team semantics as relational semantics

For X := {v | v: Prop — {0,1}} and s € P(X), we had

sEp iff Yo €s:u(p) =1,

sEpAY iff skE @ and sk,

sEpVY iff sEy or sE,

sE—p iff s o,

sEQVY iff there exist s’,s” € P(X) such that s’ E ¢;

s"Eqy;ands=s"Us".
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Team semantics as relational semantics

For X := {v | v: Prop — {0,1}} and s € P(X), we had

sEp iff Yo €s:u(p) =1,

sEpAY iff skE @ and sk,

sEpVY iff sEy or sE,

sE—p iff s o,

sEgpot iff there exist s’,s” € P(X) such that s’ E ¢;

s"Eqy;ands=s"Us".

This induces a powerset frame F = (P(X),U), where ‘o’ is a binary modality
referring to the ternary U-relation: s = s’ U s”;
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Team semantics as relational semantics

For X := {v | v: Prop — {0,1}} and s € P(X), we had

skEp iff Yo €s:u(p) =1,

sEpAY iff skE @ and sk,

sEpVY iff sEy or sE,

sE - iff sE o,

sEpo iff there exist s',s” € P(X) such that s' F ¢;

s"Eqy;ands=s"Us".

This induces a powerset frame F = (P(X),U), where ‘o’ is a binary modality
referring to the ternary U-relation: s = s’ U s”; and a model
M = (P(X),U, V) with a ‘principal valuation’, i.e,,

Vip) ={seP(X)|Vwes:vlp) =1}=]{veX|v(p) =1}
In fact, if we take all powerset frames (P(X), U), redefine the base clause
(P(X),U,V),slkp iff s e V(p),

and only allow principal valuations V : Prop — {]s | s € P(X)}, we get
sound and complete relational semantics for team logics.

Proof. A simple p-morphism argument. .



